Generalized Ekeland’s variational principle with applications
نویسندگان
چکیده
منابع مشابه
Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کامل$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملVariational principle for generalized Gibbsian measures
We study the thermodynamic formalism for generalized Gibbs measures, such as renormalization group transformations of Gibbs measures or joint measures of disordered spin systems. We first show existence of the relative entropy density and obtain a familiar expression in terms of entropy and relative energy for ”almost Gibbsian measures” (almost sure continuity of conditional probabilities). We ...
متن کاملA generalized form of Ekeland’s variational principle
In this paper we prove a generalized version of the Ekeland variational principle, which is a common generalization of Zhong variational principle and Borwein Preiss Variational principle. Therefore in a particular case, from this variational principle we get a Zhong type variational principle, and a Borwein-Preiss variational principle. As a consequence, we obtain a Caristi type fixed point th...
متن کاملParametric Borwein-preiss Variational Principle and Applications
A parametric version of the Borwein-Preiss smooth variational principle is presented, which states that under suitable assumptions on a given convex function depending on a parameter, the minimum point of a smooth convex perturbation of it depends continuously on the parameter. Some applications are given: existence of a Nash equilibrium and a solution of a variational inequality for a system o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2019
ISSN: 1029-242X
DOI: 10.1186/s13660-019-2207-3